4.7 Article

JNK signalling regulates antioxidant responses in neurons

期刊

REDOX BIOLOGY
卷 37, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2020.101712

关键词

Drosophila; Glutathione; Hydrogen Peroxide; ROS

资金

  1. BBSRC [BB/I012273/1, BB/M002322/1]
  2. Wellcome Trust through the Centre for Future Health (CFH) at the University of York [204829]
  3. BBSRC [BB/I01179X/1, BB/M002322/1, BB/I012273/1] Funding Source: UKRI

向作者/读者索取更多资源

Reactive oxygen species (ROS) are generated during physiological bouts of synaptic activity and as a consequence of pathological conditions in the central nervous system. How neurons respond to and distinguish between ROS in these different contexts is currently unknown. In Drosophila mutants with enhanced JNK activity, lower levels of ROS are observed and these animals are resistant to both changes in ROS and changes in synapse morphology induced by oxidative stress. In wild type flies, disrupting JNK-AP-1 signalling perturbs redox homeostasis suggesting JNK activity positively regulates neuronal antioxidant defense. We validated this hypothesis in mammalian neurons, finding that JNK activity regulates the expression of the antioxidant gene Srxn-1, in a c-Jun dependent manner. We describe a conserved 'adaptive' role for neuronal JNK in the maintenance of redox homeostasis that is relevant to several neurodegenerative diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据