4.7 Article

Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators

期刊

REDOX BIOLOGY
卷 36, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2020.101615

关键词

ACE2; COVID-19; CTSB/L; Gene expression; SARS-CoV-2; TMPRSS2

资金

  1. Hellenic GSRT project BIOIMAGING-GR [MIS 5002755]
  2. Hellenic GSRT project PlantUP-GR [MIS 5002803]

向作者/读者索取更多资源

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) and has resulted in hundreds of thousands of deaths worldwide. While the majority of people with COVID-19 won't require hospitalization, those who do may experience severe life-threatening complications, including acute respiratory distress syndrome. SARS-CoV-2 infects human cells by binding to the cellular surface protein angiotensin-converting enzyme 2 (ACE2); in addition, the cellular transmembrane serine protease 2 (TMPRSS2) is needed for priming of the spike (S) protein of the virus. Virus entry may also depend on the activity of the endosomal/lysosomal cysteine proteases cathepsin B, L (CTSB, CTSL) although their activity is likely dispensable. Given that the uncertainty of how COVID-19 kills, hampers doctors' ability to choose treatments the need for a deep understanding of COVID-19 biology is urgent. Herein, we performed an expression profiling meta-analysis of ACE2, TMPRSS2 and CTSB/L genes (and proteins) in public repository databases and found that all are widely expressed in human tissues; also, the ACE2 and TMPRSS2 genes tend to be co-regulated. The ACE2 and TMPRSS genes expression is (among others) suppressed by TNF, and is induced by pro-inflammatory conditions including obesity, Barrett's esophagus, stomach infection by helicobacter pylori, diabetes, autoimmune diseases and oxidized LDL; by exercise, as well as by growth factors, viruses' infections, cigarette smoke, interferons and androgens. Regarding currently investigated therapies interferon-beta induced ACE2 gene expression in bronchial epithelial cells, while chloroquine tends to upregulate CTSB/L genes. Finally, we analyzed KEGG pathways modulated by ACE2, TMPRSS2 and CTSB/L and probed DrugBank for drugs that target modules of the affected pathways. Our data indicate possible novel high-risk groups for COVID-19; provide a rich resource for future investigations of its pathogenesis and highlight the therapeutic challenges we face.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据