4.4 Article

Deep learning based energy efficient optimal timetable rescheduling model for intelligent metro transportation systems

期刊

PHYSICAL COMMUNICATION
卷 42, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.phycom.2020.101131

关键词

Metro systems; Intelligent transportation; Timetable rescheduling; Deep learning

向作者/读者索取更多资源

Due to the recent advances in intelligent transportation systems (ITS), Automatic Train System (ATS) gained significant attention among the research community. An effective ATS offers the whole railway network to operate in a safe, cost-effective and proficient manner against sudden disturbances like temporary platform blockages. Numerous Train Timetable Rescheduling (TTR) models have been presented for managing unforeseen events which might disturb the timetable. The main aim of an effective TTR model is to reduce power utilization by consuming the entire benefits of reproductive braking energy under a random situation. In this view, this paper presents a new TTR model to optimize the energy of metro systems by the incorporation of improved genetic algorithm (IGA) and long short term memory (LSTM) based recurrent neural network (RNN). The proposed method incorporates three different models, namely controller, timetable, and energy models. The proposed method requires minimum time to recompute a new schedule and offers effective solutions instantly after a random disturbance happens. The performance validation of the proposed IGSA-LSTM model is simulated using Chennai Metro Train Station. The proposed method significantly reduces the energy consumption of metro train and reaches to a minimum average energy utilization of 696 kWh. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据