4.7 Article

Adipocyte-specific Beclin1 deletion impairs lipolysis and mitochondrial integrity in adipose tissue

期刊

MOLECULAR METABOLISM
卷 39, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molmet.2020.101005

关键词

Beclin1; Lipophagy; Mitophagy; Lipolysis; Brown adipose tissue; White adipose tissue

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIT) [NRF-2019R1C1C1002014, NRF-2018R1A5A2024425, NRF-2013M3A9D5072550]
  2. NIH [F31DK116536, R01DK062292]

向作者/读者索取更多资源

Objective: Beclin1 is a core molecule of the macroautophagy machinery. Although dysregulation of macroautophagy is known to be involved in metabolic disorders, the function of Beclin1 in adipocyte metabolism has not been investigated. In the present study, we aimed to study the role of Beclin1 in lipolysis and mitochondrial homeostasis of adipocytes. Methods: Autophagic flux during lipolysis was examined in adipocytes cultured in vitro and in the adipose tissue of mice. Adipocyte-specific Beclin1 knockout (KO) mice were used to investigate the activities of Beclin1 in adipose tissues. Results: cAMP/PKA signaling increased the autophagic flux in adipocytes differentiated from C3H10T1/2 cells. In vivo autophagic flux was higher in the brown adipose tissue (BAT) than that in the white adipose tissue and was further increased by the b3 adrenergic receptor agonist CL316243. In addition, surgical denervation of BAT greatly reduced autophagic flux, indicating that sympathetic nerve activity is a major regulator of tissue autophagy. Adipocyte-specific KO of Beclin1 led to a hypertrophic enlargement of lipid droplets in BAT and impaired CL316243-induced lipolysis/lipid mobilization and energy expenditure. While short-term effects of Beclin1 deletion were characterized by an increase in mitochondrial proteins, long-term Beclin1 deletion led to severe disruption of autophagy, resulting in mitochondrial loss, and dramatically reduced the expression of genes involved in lipid metabolism. Consequently, adipose tissue underwent increased activation of cell death signaling pathways, macrophage recruitment, and inflammation, particularly in BAT. Conclusions: The present study demonstrates the critical roles of Beclin1 in the maintenance of lipid metabolism and mitochondrial homeostasis in adipose tissues. (C) 2020 The Author(s). Published by Elsevier GmbH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据