4.6 Review

Mechanical property design of molecular solids

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cossms.2016.05.011

关键词

Crystal engineering; Elasticity; Hardness; Nanoindentation; Solid solution hardening; Cocrystal; Pharmaceutical chemistry

资金

  1. CSIR
  2. Department of Science and Technology, India

向作者/读者索取更多资源

The current emphasis of crystal engineering, which has evolved over the past three decades through crystal packing analysis and identification of crystal design strategies, has shifted from structure to properties, i.e., design of molecular solids with targeted combination of properties. Amongst the panoply of chemical, physical, and biological properties that these materials exhibit, a comprehensive understanding of the mechanical properties is perhaps the most challenging as it involves connecting molecular level structural features to macroscopic mechanical behavior. However, the adoption of the nanoindentation technique, with which it is possible to measure both quantitatively and accurately the mechanical response of even small single crystals, in crystal engineering, has paved the way for substantial progress in the recent past. In this review, we summarize some recent results with an emphasis as to how one can design and control properties of molecular solids such as elastic modulus and hardness. This review closes with an enumeration of the key challenges that lie ahead. Such studies show a big scope for studying mechanical properties of organic crystals as a function of crystal structure, and in turn to understand their structure-property relationship for designing future smart materials. This emerging research field has prospects and a potential to play an important role in the future development of crystal engineering. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据