4.8 Article

Pushing and Pulling on Ropes: Hierarchical Woven Materials

期刊

ADVANCED SCIENCE
卷 7, 期 20, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202001271

关键词

architected materials; extensible materials; resilient materials; tensile responses; woven lattices

资金

  1. National Science Foundation through W.P.M.'s Graduate Research Fellowship
  2. Vannevar Bush Faculty Fellowship
  3. Office of Naval Research Award [N00014-16-1-2431]

向作者/读者索取更多资源

Hierarchy in natural and synthetic materials has been shown to grant these architected materials properties unattainable independently by their constituent materials. While exceptional mechanical properties such as extreme resilience and high deformability have been realized in many human-made three-dimensional (3D) architected materials using beam-and-junction-based architectures, stress concentrations and constraints induced by the junctions limit their mechanical performance. A new hierarchical architecture in which fibers are interwoven to construct effective beams is presented. In situ tension and compression experiments of additively manufactured woven and monolithic lattices with 30 mu m unit cells demonstrate the superior ability of woven architectures to achieve high tensile and compressive strains (>50%)-without failure events-via smooth reconfiguration of woven microfibers in the effective beams and junctions. Cyclic compression experiments reveal that woven lattices accrue less damage compared to lattices with monolithic beams. Numerical studies of woven beams with varying geometric parameters present new design spaces to develop architected materials with tailored compliance that is unachievable by similarly configured monolithic-beam architectures. Woven hierarchical design offers a pathway to make traditionally stiff and brittle materials more deformable and introduces a new building block for 3D architected materials with complex nonlinear mechanics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据