4.5 Article

Development of Biphenylthiazoles Exhibiting Improved Pharmacokinetics and Potent Activity Against Intracellular Staphylococcus aureus

期刊

ACS INFECTIOUS DISEASES
卷 6, 期 11, 页码 2887-2900

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsinfecdis.0c00137

关键词

antibiotic resistance; methicillin-resistant Staphylococcus aureus; vancomycin-resistant enterococci; intracellular infections; pharmacokinetics

资金

  1. Academy of Scientific Research and Technology, JESOUR-D program [3092]

向作者/读者索取更多资源

Exploring the structure-activity relationship (S AR) at the cationic part of arylthiazole antibiotics revealed hydrazine as an active moiety. The main objective of the study is to overcome the inherited toxicity associated with the free hydrazine. A series of hydrocarbon bridges was inserted in between the groups, to separate the two amino groups. Hence, the aminomethylpiperidine-containing analog 16 was identified as a new promising antibacterial agent with efficient antibacterial and pharmacokinetic profiles. Briefly, compound 16 outperformed vancomycin in terms of the antibacterial spectrum against vancomycin-resistant staphylococcal and enterococcal strains with minimum inhibitory concentrations (MICs) ranging from 2 to 4 mu g/mL, which is a faster bactericidal mode of action, completely eradicating the high staphylococcal burden within 6-8 h, and it has a unique ability to completely clear intracellular staphylococci. In addition, the initial pharmacokinetic assessment confirmed the high metabolic stability of compound 16 (biological half-life >4 h); it had a good extravascular distribution and maintained a plasma concentration higher than the average MIC value for over 12 h. Moreover, compound 16 significantly reduced MRSA burden in an in vivo MRSA skin infection mouse experiment. These attributes collectively suggest that compound 16 is a good therapeutic candidate for invasive staphylococcal and enterococcal infections. From a mechanistic point of view, compound 16 inhibited undecaprenyl diphosphate phosphatase (UppP) with an IC50 value of 29 mu M.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据