4.7 Review

Meta-optics for spatial optical analog computing

期刊

NANOPHOTONICS
卷 9, 期 13, 页码 4075-4095

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/nanoph-2020-0285

关键词

edge sensing; Fourier transformation; Green's function; metasurfaces; optical analog computing

资金

  1. Office of Naval Research (ONR) [N00014-18-1-2055]

向作者/读者索取更多资源

Rapidly growing demands for high-performance computing, powerful data processing, and big data necessitate the advent of novel optical devices to perform demanding computing processes effectively. Due to its unprecedented growth in the past two decades, the field of meta-optics offers a viable solution for spatially, spectrally, and/or even temporally sculpting amplitude, phase, polarization, and/or dispersion of optical wavefronts. In this review, we discuss state-of-the-art developments, as well as emerging trends, in computational metastructures as disruptive platforms for spatial optical analog computation. Two fundamental approaches based on general concepts of spatial Fourier transformation and Green's function (GF) are discussed in detail. Moreover, numerical investigations and experimental demonstrations of computational optical surfaces and metastructures for solving a diverse set of mathematical problems (e.g., integrodifferentiation and convolution equations) necessary for on-demand information processing (e.g., edge detection) are reviewed. Finally, we explore the current challenges and the potential resolutions in computational meta-optics followed by our perspective on future research directions and possible developments in this promising area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据