4.7 Article

Characterization of Commercial Metal Oxide Nanomaterials: Crystalline Phase, Particle Size and Specific Surface Area

期刊

NANOMATERIALS
卷 10, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/nano10091812

关键词

metal oxide nanomaterials; X-ray diffraction; transmission electron microscopy; specific surface area; crystalline phase

资金

  1. Health Canada's New Substances Assessment Control Bureau
  2. Healthy Environments and Consumer Safety Branch
  3. NRC
  4. University of Ottawa

向作者/读者索取更多资源

Physical chemical characterization of nanomaterials is critical to assessing quality control during production, evaluating the impact of material properties on human health and the environment, and developing regulatory frameworks for their use. We have investigated a set of 29 nanomaterials from four metal oxide families (aluminum, copper, titanium and zinc) with a focus on the measurands that are important for the basic characterization of dry nanomaterials and the determination of the dose metrics for nanotoxicology. These include crystalline phase and crystallite size, measured by powder X-ray diffraction, particle shape and size distributions from transmission electron microscopy, and specific surface area, measured by gas adsorption. The results are compared to the nominal data provided by the manufacturer, where available. While the crystalline phase data are generally reliable, data on minor components that may impact toxicity is often lacking. The crystal and particle size data highlight the issues in obtaining size measurements of materials with broad size distributions and significant levels of aggregation, and indicate that reliance on nominal values provided by the manufacturer is frequently inadequate for toxicological studies aimed at identifying differences between nanoforms. The data will be used for the development of models and strategies for grouping and read-across to support regulatory human health and environmental assessments of metal oxide nanomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据