4.5 Article

Prediction of Fatigue Crack Growth Behaviour in Ultrafine Grained Al 2014 Alloy Using Machine Learning

期刊

METALS
卷 10, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/met10101349

关键词

machine learning; fatigue crack growth; back propagation neural network; extreme learning machine; cryo-rolling; Al alloy

向作者/读者索取更多资源

The present work investigates the relationship between fatigue crack growth rate (da/dN) and stress intensity factor range ( increment K) using machine learning models with the experimental fatigue crack growth rate (FCGR) data of cryo-rolled Al 2014 alloy. Various machine learning techniques developed recently provide a flexible and adaptable approach to explain the complex mathematical relations especially, non-linear functions. In the present work, three machine algorithms such as extreme learning machine (ELM), back propagation neural networks (BPNN) and curve fitting model are implemented to analyse FCGR of Al alloys. After tuning of networks with varying hidden layers and number of neurons, the trained models found to fit well to the tested data. The three tested models are compared with each other over the training as well as testing phase. The mean square error for predicting the FCG of cryo-rolled Al 2014 alloy by BPNN, ELM and curve fitting methods are 1.89, 1.84 and 0.09 respectively. While the ELM models outperform the rest of models in terms of training time, curve fitting model showed best performance in terms of accuracy over testing data with least mean square error (MSE). In terms of local optimisation, back propagation neural networks excel the other two models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据