4.8 Article

Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells

期刊

NANO ENERGY
卷 76, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2020.105127

关键词

Perovskite solar cells (PSCs); SnO2 electron transporting layer (ETL); Interface engineering; Nonradiative recombination; 2-Methylbenzimidazole

向作者/读者索取更多资源

Despite the tremendous progress in the efficiency of perovsite solar cells (PSCs), nonradiative recombination losses, mainly associated with the interfacial defects, still remain as a challenge that hinders their commercialization. In this study, we report a facile interface engineering strategy for highly-efficient planar PSCs by employing in a series concentration of 2-methylbenzimidazole (MBIm) between SnO2 electron transporting layer (ETL) and photoactive perovskite layer. The preliminary results demonstrate that MBIm molecules reduce the band-offset and enlarge the built-in potential (Vbi) between perovskite and SnO2, resulting in a lower photovoltage loss. Besides, MBIm provides an efficient passivation by donating the lone pair electrons to the uncoordinated Pb2+ ions in perovskite structure through the formation of Lewis adducts, thereby minimizing nonradiative recombination in the ensuing devices. As a result, a remarkable increase in the efficiency from 19.5% (pristine cell) to 21.6% (3 mM-MBIm modified cell) was achieved with a dramatic increase in Voc (similar to 90 mV). Meanwhile, an admissible improvement in long-term stability was obtained by retaining similar to 85 and 90% of initial performance under high humidity and continuous light soaking conditions, respectively. The prolonged stability is ascribed to the formation of compact and high-quality perovskite layer deposited on the modified surfaces. We believe that this study offers an efficient strategy by minimizing the nonradiative recombination losses through ETL/perovskite interface for high-efficiency and stable perovskite cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据