4.8 Article

Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation

期刊

NANO ENERGY
卷 76, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2020.105031

关键词

elf-integrated effects; 2D ZnIn2S4; Photocatalytic hydrogen production; Photocatalytic mechanism

资金

  1. National Basic Research Program of China [2014CB931700]
  2. State Key Laboratory of Optoelectronic Materials and Technologies

向作者/读者索取更多资源

To maximize the performance of photocatalytic hydrogen production, photocatalysts need to be modified by various means such as energy band engineering and cocatalyst. Here, we propose a strategy of self-integrated effects for promoting photocatalysts performance. We firstly design and fabricate a 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite photocatalyst by integrating heterojunction effect, cocatalyst effect and photothermal effect in one, and then demonstrate that self-integrated effects of Mo2C/ZnIn2S4 composite can greatly enhance photocatalytic hydrogen evolution. Based on in situ characterization techniques and theoretical calculations, we also establish that the photocatalytic mechanism of self-integrated effects consisting heterojunction effect, cocatalyst effect and photothermal effect is attributed to the increased absorption capacity, the enhanced carrier separation, the reduced Delta GH*, the more active sites, the increased electron density and the enhanced carrier's mobility. Especially, the contribution of photothermal effect can elevate temperature to accelerate the photocatalytic reaction and the photothermal contribution exceeds 100% under irradiation. Consequently, 2D ZnIn2S4/amorphous Mo2C nanoparticles has a remarkable photocatalytic hydrogen evolution rate respectively up to 22.11 and 40.93 mmol/g/h upon visible and AM1.5 illumination, promoting 164% and 156% for the available values reported of modified ZnIn2S4 photocatalysts so far. These findings suggest that the proposed self-integrated effects can greatly promote photocatalytic hydrogen production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据