4.8 Article

Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying

期刊

NANO ENERGY
卷 76, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2020.105084

关键词

Thermoelectric; SnSb2Te4; Band convergence; Lattice anharmonicity; Defects

资金

  1. National Natural Science Foundation of China [11674040, 11904348 11604032, 51472036, 51672270]
  2. Fundamental Research Funds for the Central Universities [106112016CDJZR308808]
  3. Key Research Program of Frontier Sciences, CAS [QYZDB-SSW-SLH016]

向作者/读者索取更多资源

Seeking a material with intrinsically low lattice thermal conductivity is crucial for screening high-performance thermoelectric (TE) materials. Here, the TE properties of SnSb2(Te1-xSex)4 (0 <= x <= 0.25) samples are systematically investigated for the first time. An intrinsically ultralow lattice thermal conductivity (similar to 0.56 W m(-1) K-1 at 320 K and similar to 0.46 W m(-1) K-1 at 720 K) has been observed in SnSb2Te4, which can be ascribed to the weak chemical bonding as well as the bond anharmonicity verified by first-principles calculations. Furthermore, alloying with Se enables the remarkable increase in the Seebeck coefficients, resulting from the optimized carrier concentrations due to the enlarged formation energy of intrinsic SnSb-type antisite defects along with the simultaneous enhancement of density-of-states effective mass from the convergence of multiple carrier pockets. As a result, a peak zT value of 0.5 at 720 K and a significant improvement in average zT (similar to 200%) in SnSb2(Te0.75Se0.25)(4) are achieved. This work not only demonstrates the potential of SnSb2Te4-based compounds for practical TE applications, but also provides an insightful guidance to improve TE performance by defect and electronic band engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据