4.4 Article

Vector boson fusion at multi-TeV muon colliders

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 9, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP09(2020)080

关键词

Beyond Standard Model; Effective Field Theories; Higgs Physics

资金

  1. European Union's Horizon 2020 research and innovation programme as part of the Marie Sklodowska-Curie Innovative Training Network MCnetITN3 [722104]
  2. FNRS Excellence of ScienceEOS be.h Project [30820817]
  3. INFN [20286/2018]
  4. UC Louvain fund MOVE-IN Louvain
  5. VBSCan COST Action [CA16108]
  6. Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS) [2.5020.11]
  7. Walloon Region

向作者/读者索取更多资源

High-energy lepton colliders with a centre-of-mass energy in the multi-TeV range are currently considered among the most challenging and far-reaching future accelerator projects. Studies performed so far have mostly focused on the reach for new phenomena in lepton-antilepton annihilation channels. In this work we observe that starting from collider energies of a few TeV, electroweak (EW) vector boson fusion/scattering (VBF) at lepton colliders becomes the dominant production mode for all Standard Model processes relevant to studying the EW sector. In many cases we find that this also holds for new physics. We quantify the size and the growth of VBF cross sections with collider energy for a number of SM and new physics processes. By considering luminosity scenarios achievable at a muon collider, we conclude that such a machine would effectively be a high-luminosity weak boson collider, and subsequently offer a wide range of opportunities to precisely measure EW and Higgs couplings as well as discover new particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据