4.2 Article

Environmental Pollutant Benzo[a]pyrene Induces Recurrent Pregnancy Loss through Promoting Apoptosis and Suppressing Migration of Extravillous Trophoblast

期刊

BIOMED RESEARCH INTERNATIONAL
卷 2020, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2020/8983494

关键词

-

资金

  1. National Key Research and Development Program of China [SQ2018YFC100236]
  2. Outstanding Youth Foundation of Guangdong Province of China [2020B1515020001]
  3. 5010 Program of Sun Yat-sen University [2019003]
  4. Special Fund for Clinical Research of Chinese Medical Association [18010180747]
  5. National Natural Science Foundation of China [81771545]

向作者/读者索取更多资源

Objects. To investigate the effects of environmental pollutant benzo(a)pyrene (BaP) and its metabolite benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) on human trophoblasts and on murine miscarriages. Methods. The implantation sites, fetus resorption, and abnormal fetuses were studied in pregnant mice treated with different doses of BaP by oral gavage from day 1 to day 10 of gestation. Additionally, apoptosis and related signaling pathway, and the migration and invasion of trophoblasts, were assessed before and after exposure of BPDE in Swan 71 trophoblast cell. Besides, the migration and invasion, and its related signaling pathway, were assessed in villi obtained from women. Results. We observed a concentration-dependent incidence of abnormal murine fetuses, beginning with 0.1 mg/kg BaP; with a BaP concentration of 2 mg/kg, no fetuses developed. Correspondingly, a BPDE concentration-dependent apoptosis of human trophoblasts. Beginning with 0.5 mu M BPDE exposure, Bax/Caspase-3 were increased and Bcl-2 decreased. Furthermore, BPDE also inhibited, in a dose-dependent manner, the migration of villous explants from elective abortion women, consistent with the reduced migration of villous explants from women with recurrent pregnancy loss (RPL), and reduced the cell immigration in Swan 71 trophoblasts, in a dose-dependent manner measured by transwell assays. Conclusions. Our study results provide mechanistic insight to the effect of BPDE on trophoblast dysfunction through enhanced cell apoptosis and inhibited migration, providing further experimental evidence to the causative links between BaP exposure and PRL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据