4.7 Article

Estimating Crop and Grass Productivity over the United States Using Satellite Solar-Induced Chlorophyll Fluorescence, Precipitation and Soil Moisture Data

期刊

REMOTE SENSING
卷 12, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/rs12203434

关键词

solar-induced chlorophyll fluorescence; precipitation; soil moisture; gross primary production; satellite observations; multiple linear regression

资金

  1. National Key Research and Development Program of China [2016YFA0600403]
  2. Jackson School of Geosciences

向作者/读者索取更多资源

This study investigates how gross primary production (GPP) estimates can be improved with the use of solar-induced chlorophyll fluorescence (SIF) based on the interdependence between SIF, precipitation, soil moisture and GPP itself. We have used multi-year datasets from Global Ozone Monitoring Experiment-2 (GOME-2), Tropical Rainfall Measuring Mission (TRMM), European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM), and FLUXNET observations from ten stations in the continental United States. We have employed a GPP quantification framework that makes use of two factors whose influence on the SIF-GPP relationship was not evaluated previously-namely, differential plant sensitivity to water supply at different stages of its lifecycle and spatial variability patterns in SIF that are in contrast to those of GPP, precipitation, and soil moisture. It was found that over the Great Plains and Texas, fluorescence emission levels lag behind precipitation events from about two weeks for grasses to four weeks for crops. The spatial variability of SIF and GPP is shown to be characterized by different patterns: SIF demonstrates less variation over the same spatial extent as compared to GPP, precipitation and soil moisture. Thus, using newly introduced SIF-precipitation lead-lag relationships, we estimate GPP using SIF, precipitation and soil moisture data for grasses and crops over the US by applying the multiple linear regression technique. Our GPP estimates capture the drought impact over the US better than those from Moderate Resolution Imaging Spectroradiometer (MODIS). During the drought year of 2011 over Texas, our GPP values show a decrease by 50-75 gC/m2/month, as opposed to the normal yielding year of 2007. In 2012, a drought year over the Great Plains, we observe a significant reduction in GPP, as compared to 2007. Hence, estimating GPP using specific SIF-GPP relationships, and information on different plant functional types (PFTs) and their interactions with precipitation and soil moisture over the Great Plains and Texas regions can help produce more reasonable GPP estimates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据