4.7 Article

Spatiotemporal Variation of Snow Depth in the Northern Hemisphere from 1992 to 2016

期刊

REMOTE SENSING
卷 12, 期 17, 页码 -

出版社

MDPI
DOI: 10.3390/rs12172728

关键词

passive microwave; snow depth; snow cover days; spatiotemporal variation; Northern Hemisphere

资金

  1. National Key R&D Program of China [2019YFA0607003]
  2. Strategic Priority Research Program of Chinese Academy of Sciences [XDA20100313]
  3. National Research and Development Program of China [2019YFC1509100]

向作者/读者索取更多资源

A comprehensive and hemispheric-scale snow cover and snow depth analysis is a prerequisite for all related processes and interactions investigation on regional and global surface energy and water balance, weather and climate, hydrological processes, and water resources. However, such studies were limited by the lack of data products and/or valid snow retrieval algorithms. The overall objective of this study is to investigate the variation characteristics of snow depth across the Northern Hemisphere from 1992 to 2016. We developed long-term Northern Hemisphere daily snow depth (NHSnow) datasets from passive microwave remote sensing data using the support vector regression (SVR) snow depth retrieval algorithm. NHSnow is evaluated, along with GlobSnow and ERA-Interim/Land, for its accuracy across the Northern Hemisphere against meteorological station snow depth measurements. The results show that NHSnow performs comparably well with a relatively high accuracy for snow depth with a bias of -0.6 cm, mean absolute error of 16 cm, and root mean square error of 20 cm when benchmarked against the station snow depth measurements. The analysis results show that annual average snow depth decreased by 0.06 cm per year from 1992 to 2016. In the three seasons (autumn, winter, and spring), the areas with a significant decreasing trend of seasonal maximum snow depth are larger than those with a significant increasing trend. Additionally, snow cover days decreased at the rate of 0.99 day per year during 1992-2016. This study presents that the variation trends of snow cover days are, in part, not consistent with the variation trends of the annual average snow depth, of which approximately 20% of the snow cover areas show the completely opposite variation trends for these two indexes over the study period. This study provides a new perspective in snow depth variation analysis, and shows that rapid changes in snow depth have been occurring since the beginning of the 21st century, accompanied by dramatic climate warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据