4.7 Article

Application of Artificial Neural Networks for Producing an Estimation of High-Density Polyethylene

期刊

POLYMERS
卷 12, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/polym12102319

关键词

polyethylene; ethylene index; intelligence approaches; prediction

向作者/读者索取更多资源

Polyethylene as a thermoplastic has received the uppermost popularity in a vast variety of applied contexts. Polyethylene is produced by several commercially obtainable technologies. Since Ziegler-Natta catalysts generate polyolefin with broad molecular weight and copolymer composition distributions, this type of model was utilized to simulate the polymerization procedure. The EIX (ethylene index) is the critical controlling variable that indicates product characteristics. Since it is difficult to measure the EIX, estimation is a problem causing the greatest challenges in the applicability of production. To resolve such problems, ANNs (artificial neural networks) are utilized in the present paper to predict the EIX from some simply computed variables of the system. In fact, the EIX is calculated as a function of pressure, ethylene flow, hydrogen flow, 1-butane flow, catalyst flow, and TEA (triethylaluminium) flow. The estimation was accomplished via the Multi-Layer Perceptron, Radial Basis, Cascade Feed-forward, and Generalized Regression Neural Networks. According to the results, the superior performance of the Multi-Layer Perceptron model than other ANN models was clearly demonstrated. Based on our findings, this model can predict production levels with R-2 (regression coefficient), MSE (mean square error), AARD% (average absolute relative deviation percent), and RMSE (root mean square error) of, respectively, 0.89413, 0.02217, 0.4213, and 0.1489.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据