4.3 Review

The Effects of Upper-Body Exoskeletons on Human Metabolic Cost and Thermal Response during Work Tasks-A Systematic Review

出版社

MDPI
DOI: 10.3390/ijerph17207374

关键词

exoskeletons; wearable assistive device; metabolic cost; oxygen consumption; thermal comfort; lifting task; overhead work; occupational health; work-related musculoskeletal disorders

资金

  1. European Union [871237]

向作者/读者索取更多资源

Background: New wearable assistive devices (exoskeletons) have been developed for assisting people during work activity or rehabilitation. Although exoskeletons have been introduced into different occupational fields in an attempt to reduce the risk of work-related musculoskeletal disorders, the effectiveness of their use in workplaces still needs to be investigated. This systematic review focused on the effects of upper-body exoskeletons (UBEs) on human metabolic cost and thermophysiological response during upper-body work tasks. Methods: articles published until 22 September 2020 were selected from Scopus, Web of Science, and PubMed for eligibility and the potential risk of bias was assessed. Results: Nine articles resulted in being eligible for the metabolic aspects, and none for the thermal analysis. All the studies were based on comparisons between conditions with and without exoskeletons and considered a total of 94 participants (mainly males) performing tasks involving the trunk or overhead work, 7 back-support exoskeletons, and 1 upper-limb support exoskeleton. Eight studies found a significant reduction in the mean values of the metabolic or cardiorespiratory parameters considered and one found no differences. Conclusions: The reduction found represents a preliminary finding that needs to be confirmed in a wider range of conditions, especially in workplaces, where work tasks show different characteristics and durations compared to those simulated in the laboratory. Future developments should investigate the dependence of metabolic cost on specific UBE design approaches during tasks involving the trunk and the possible statistical correlation between the metabolic cost and the surface ElectroMyoGraphy (sEMG) parameters. Finally, it could be interesting to investigate the effect of exoskeletons on the human thermophysiological response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据