4.6 Article

Dropout in Neural Networks Simulates the Paradoxical Effects of Deep Brain Stimulation on Memory

期刊

FRONTIERS IN AGING NEUROSCIENCE
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnagi.2020.00273

关键词

neuromodulation; deep brain stimulation; memory; neural network; dropout

资金

  1. Hong Kong Research Grants Council [RGC-ECS 27104616]
  2. University of Hong Kong Seed Funding for Basic Research

向作者/读者索取更多资源

Neuromodulation techniques such as deep brain stimulation (DBS) are a promising treatment for memory-related disorders including anxiety, addiction, and dementia. However, the outcomes of such treatments appear to be somewhat paradoxical, in that these techniques can both disrupt and enhance memory even when applied to the same brain target. In this article, we hypothesize that disruption and enhancement of memory through neuromodulation can be explained by the dropout of engram nodes. We used a convolutional neural network (CNN) to classify handwritten digits and letters and applied dropout at different stages to simulate DBS effects on engrams. We showed that dropout applied during training improved the accuracy of prediction, whereas dropout applied during testing dramatically decreased the accuracy of prediction, which mimics enhancement and disruption of memory, respectively. We further showed that transfer learning of neural networks with dropout had increased the accuracy and rate of learning. Dropout during training provided a more robust skeleton network and, together with transfer learning, mimicked the effects of chronic DBS on memory. Overall, we showed that the dropout of engram nodes is a possible mechanism by which neuromodulation techniques such as DBS can both disrupt and enhance memory, providing a unique perspective on this paradox.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据