4.5 Article

Temperature dependency of predation: Increased killing rates and prey mass consumption by predators with warming

期刊

ECOLOGY AND EVOLUTION
卷 10, 期 18, 页码 9696-9706

出版社

WILEY
DOI: 10.1002/ece3.6581

关键词

arthropods; feeding rates; nutritional ecology; predator-prey interactions; spiders; temperature change

资金

  1. Rutgers University Dean's Graduate Student Research and Travel Grants
  2. Department of Biology of the Pontificia Universidad Catolica del Ecuador

向作者/读者索取更多资源

Temperature dependency of consumer-resource interactions is fundamentally important for understanding and predicting the responses of food webs to climate change. Previous studies have shown temperature-driven shifts in herbivore consumption rates and resource preference, but these effects remain poorly understood for predatory arthropods. Here, we investigate how predator killing rates, prey mass consumption, and macronutrient intake respond to increased temperatures using a laboratory and a field reciprocal transplant experiment. Ectothermic predators, wolf spiders (Pardosa sp.), in the lab experiment, were exposed to increased temperatures and different prey macronutrient content (high lipid/low protein and low lipid/high protein) to assess changes in their killing rates and nutritional demands. Additionally, we investigate prey mass and lipid consumption by spiders under contrasting temperatures, along an elevation gradient. We used a field reciprocal transplant experiment between low (420 masl; 26 degrees C) and high (2,100 masl; 15 degrees C) elevations in the Ecuadorian Andes, using wild populations of two common orb-weaver spider species (Leucauge sp. and Cyclosa sp.) present along the elevation gradient. We found that killing rates of wolf spiders increased with warmer temperatures but were not significantly affected by prey macronutrient content, although spiders consumed significantly more lipids from lipid-rich prey. The field reciprocal transplant experiment showed no consistent predator responses to changes in temperature along the elevational gradient. Transplanting Cyclosa sp. spiders to low- or high-elevation sites did not affect their prey mass or lipid consumption rate, whereas Leucauge sp. individuals increased prey mass consumption when transplanted from the high to the low warm elevation. Our findings show that increases in temperature intensify predator killing rates, prey consumption, and lipid intake, but the responses to temperature vary between species, which may be a result of species-specific differences in their hunting behavior and sensitivity to temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据