4.7 Article

Intrinsic molecular vibration and rigorous vibrational assignment of benzene by first-principles molecular dynamics

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-020-74872-6

关键词

-

资金

  1. SYNL Basic Frontier & Technological Innovation Research Project [L2019R10]
  2. National Key R&D Program of China [2016YFB0701302]
  3. CAS Frontier Science Research Project [QYZDJ-SSW-JSC015]
  4. Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund

向作者/读者索取更多资源

Vibrational assignment, which establishes the correspondence between vibrational modes and spectral frequencies, is a key step in any spectroscopic study. Due to the lack of experimental technique to directly observe the thermal vibration of atoms, the assignment is usually done by empirical trial-and-error method with considerable uncertainty. Here we demonstrate a successful study of intrinsic molecular vibration property based on first-principles molecular dynamics trajectory. A unified approach for calculating and assigning vibrational frequencies is developed and applied to solve some historical issues of benzene vibration. As a major achievement, the experimental frequencies of benzene a(2g) and b(2u) vibrations are reassigned, which breaks a deadlock in contemporary spectroscopic science and removes a cloud over the application of density-functional theory in organic chemistry. This work paves the way for the comprehensive realization of the first-principles spectroscopic research, and provides crucial clues to solve the century-old problems of Kekule resonance, pi -deformation, and aromaticity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据