4.6 Article

Diatomite-Metal-Organic Framework Composite with Hierarchical Pore Structures for Adsorption/Desorption of Hydrogen, Carbon Dioxide and Water Vapor

期刊

MATERIALS
卷 13, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/ma13214700

关键词

metal-organic frameworks; diatomite; hydrogen; carbon dioxide; water vapor

资金

  1. Queensland University of Technology

向作者/读者索取更多资源

Distinctive Cr-MOF@Da composites have been constructed using chromium-based metal-organic frameworks (MOFs) and diatomite (Da). The new materials have hierarchical pore structures containing micropores, mesopores and macropores. We have synthesized various morphologies of the MOF compound Cr-MIL-101 to combine with Da in a one-pot reaction step. These distinctive hierarchical pore networks within Cr-MIL-101@Da enable exceptional adsorptive performance for a range of molecules, including hydrogen (H-2), carbon dioxide (CO2) and water (H2O) vapor. Selectivity for H-2 or CO2 can be moderated by the morphology and composition of the Cr-MIL-101 included in the Cr-MOF@Da composite. The encapsulation and growth of Cr-MIL-101 within and on Da have resulted in excellent water retention as well as high thermal and hydrolytic stability. In some cases, Cr-MIL-101@Da composite materials have demonstrated increased thermal stability compared with that of Cr-MIL-101; for example, decomposition temperatures >340 celcius can be achieved. Furthermore, these Cr-MIL-101@Da composites retain structural and morphological integrity after 60 cycles of repeated hydration/dehydration, and after storage for more than one year. These characteristics are difficult to achieve with many MOF materials, and thus suggest that MOF-mineral composites show high potential for practical gas storage and water vapor capture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据