4.6 Article

Solid-State Li-Ion Batteries Operating at Room Temperature Using New Borohydride Argyrodite Electrolytes

期刊

MATERIALS
卷 13, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/ma13184028

关键词

solid-state batteries; argyrodites; ionic conductivity; solid electrolytes

资金

  1. European Union's Seventh Framework Program for research technological development and demonstration through the Marie Curie ITN ECOSTORE project [607040]

向作者/读者索取更多资源

Using a new class of (BH4)(-) substituted argyrodite Li(6)PS(5)Z(0.83)(BH4)(0.17), (Z = Cl, I) solid electrolyte, Li-metal solid-state batteries operating at room temperature have been developed. The cells were made by combining the modified argyrodite with an In-Li anode and two types of cathode: an oxide, LixMO2 (M = 1/3 Ni, 1/3 Mn, 1/3 Co; so called NMC) and a titanium disulfide, TiS2. The performance of the cells was evaluated through galvanostatic cycling and Alternating Current AC electrochemical impedance measurements. Reversible capacities were observed for both cathodes for at least tens of cycles. However, the high-voltage oxide cathode cell shows lower reversible capacity and larger fading upon cycling than the sulfide one. The AC impedance measurements revealed an increasing interfacial resistance at the cathode side for the oxide cathode inducing the capacity fading. This resistance was attributed to the intrinsic poor conductivity of NMC and interfacial reactions between the oxide material and the argyrodite electrolyte. On the contrary, the low interfacial resistance of the TiS2 cell during cycling evidences a better chemical compatibility between this active material and substituted argyrodites, allowing full cycling of the cathode material, 240 mAhg(-1), for at least 35 cycles with a coulombic efficiency above 97%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据