4.5 Article

Investigating statistical bias correction with temporal subsample of the upper Ping River Basin, Thailand

期刊

JOURNAL OF WATER AND CLIMATE CHANGE
卷 12, 期 5, 页码 1631-1653

出版社

IWA PUBLISHING
DOI: 10.2166/wcc.2020.021

关键词

daily rainfall; regional climate model; statistical bias correction; subsample; upper Ping River Basin

向作者/读者索取更多资源

This study investigates various statistical bias correction techniques for improving output from a regional climate model in the upper Ping River Basin in Northern Thailand. Results indicate that a combination of nonparametric transformation and monthly subsampling offers the best accuracy and robustness in correcting daily rainfall bias errors.
This study aims to investigate different statistical bias correction techniques to improve the output of a regional climate model (RCM) of daily rainfall for the upper Ping River Basin in Northern Thailand. Three subsamples are used for each bias correction method, which are (1) using full calibrated 30-year-period data, (2) seasonal subsampling, and (3) monthly subsampling. The bias correction techniques are classified into three groups, which are (1) distribution-derived transformation, (2) parametric transformation, and (3) nonparametric transformation. Eleven bias correction techniques with three different subsamples are used to derive transfer function parameters to adjust model bias error. Generally, appropriate bias correction methods with optimal subsampling are locally dependent and need to be defined specifically for a study area. The study results show that monthly subsampling would be well established by capturing the monthly mean variation after correcting the model's daily rainfall. The results also give the best-fitted parameter set of the different subsamples. However, applying the full calibrated data and the seasonal subsamples cannot substantially improve internal variability. Thus, the effect of internal climate variability of the study region is greater than the choice of bias correction methods. Of the bias correction approaches, nonparametric transformation performed best in correcting daily rainfall bias error in this study area as evaluated by statistics and frequency distributions. Therefore, using a combination of methods between the nonparametric transformation and monthly subsampling offered the best accuracy and robustness. However, the nonparametric transformation was quite sensitive to the calibration time period.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据