4.4 Article

A Predictive Abnormality Detection Model Using Ensemble Learning in Stencil Printing Process

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCPMT.2020.3012501

关键词

Control charts; Printing; Predictive models; Process control; Manufacturing; Apertures; Packaging; Anomaly diagnosis; anomaly prognosis; ensemble learning; regression control chart; stencil printing process (SPP)

向作者/读者索取更多资源

This article aims to propose a predictive abnormality detection model in the stencil printing process (SPP). The SPP is the main contributor to surface mounting technology (SMT) soldering defects. The prediction of abnormal conditions is necessary to enhance the first-pass yield and reduce the reworking costs of the printed circuit board (PCB) assembly line. In this research, a novel multiphase intelligent abnormality prognosis (IAP) framework is proposed. The model comprises two phases: the abnormality detection phase and the abnormality prediction phase. The first phase is to develop the random forest-based exponential weighted moving average (RF-based EWMA) control chart. The goal is to properly monitor the highly autocorrelated SPP process and effectively recognize the existing patterns. In the second phase, the accurate prediction of anomalies within the SPP before they arise is achieved. The integration of adaptive boosting (AdaBoost) predictive modeling and a moving recognition window approach is proposed. To discriminate the different patterns from each other, features are extracted using the sliding window, and then, the AdaBoost model is adopted to predict the occurrence of abnormal patterns in the SPP. The experimental results confirm the effectiveness and reliability of the proposed framework in early and accurate prediction of abnormal patterns within the SPP process to prevent solder paste printing defects and reduce the high reworking costs for large-scale production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据