4.5 Article

Impact of Stefan blowing on thermal radiation and Cattaneo-Christov characteristics for nanofluid flow containing microorganisms with ablation/accretion of leading edge: FEM approach

期刊

EUROPEAN PHYSICAL JOURNAL PLUS
卷 135, 期 10, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1140/epjp/s13360-020-00711-2

关键词

-

向作者/读者索取更多资源

The impacts of Stefan blowing on Cattaneo-Christov characteristics and bioconvection of self-motive microorganisms mixed in water-based nanofluids with a ablation/accretion of leading edge are examined in the present investigation. Governing partial differential formulation is transmuted into ordinary differential form via similarity functions. The finite element method is harnessed to yield solution of numerical for the resulting set of nonlinear coupled equations with coding implementation in MATLAB. It is noteworthy that the reliability and validity of the current numerical solution are an excellent agreement with existing specific solutions in the literature. The interest in computational effort centered about the formation of boundary layer patterns for microorganism distribution, fluid temperature, volume fraction of nanoinclusions and fluid velocity when influential parameters are varied. The most important results of the current examination are that upgrade in Stefan blowing parameter undermines the fluid velocity while an increment in ablation/accretion impact at leading edge shows in a deceleration in flow velocity. Another significant result is that an increment in ablation/accretion at leading edge upsurges the fluid temperature and concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据