4.0 Article

MoS2-Calix[4]arene Catalyzed Synthesis and Molecular Docking Study of 2,4,5-Trisubstituted Imidazoles As Potent Inhibitors of Mycobacterium tuberculosis

期刊

ACS COMBINATORIAL SCIENCE
卷 22, 期 10, 页码 509-518

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscombsci.0c00038

关键词

imidazoles; nanoparticles; MoS2-supported-calix[4]arene (MoS2-CA4); Mycobacterium tuberculosis; docking study

向作者/读者索取更多资源

A MoS2-supported-calixklarene (MoS2-CA4) nanocatalyst was used for efficient synthesis of 2,4,5-trisubstituted imidazole derivatives from 1-(4-nitrophenyi)-2-(4-(trifluoromethyl)phenyl)ethane-1,2-dione, aldehydes and ammonium acetate under solvent-free conditions. Reusability of the catalyst up to five cycles without any significant loss in the yields of the product is the unique feature of this heterogeneous solid catalysis. Furthermore, the noteworthy highlights of this method are safe reaction profiles, broad substrate scope, excellent yields, economical, solvent-free, and simple workup conditions. All synthesized compounds were evaluated for their in vitro antitubercular (TB) activity against Mycobacterium tuberculosis (Mtb) H37Rv. Among the screened compounds 3c, 3d, 31, 3m, and 3r had MIC values of 2.15, 2.78, 5.75, 1.36, and 0.75 mu M, respectively, and exhibited more potency than the reference drugs pyrazinamide (MIC: 3.12 mu M), ciprofloxacin (MIC: 4.73 mu M), and ethambutol (7.61 FM). Besides, potent compounds (3c, 3d, 3f, 3m, and 3r) have been tested for inhibition of MabA (beta-ketoacyl-ACP reductase) enzyme and cytotoxic activity against mammalian Vero cell line. A molecular docking study was carried out on the MabA (PDB ID: 1UZN) enzyme to predict the interactions of the synthesized compounds. The results of the in vitro anti-TB activity and docking study showed that synthesized compounds have a strong anti-TB activity and can be adapted and produced more effectively as a lead compound.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据