4.8 Article

Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-19182-1

关键词

-

资金

  1. King Abdullah University of Science and Technology [URF/1/3769-01, BAS/1/1375-01]

向作者/读者索取更多资源

Pore size uniformity is one of the most critical parameters in determining membrane separation performance. Recently, a novel type of conjugated microporous polymers (CMPs) has shown uniform pore size and high porosity. However, their brittle nature has prevented them from preparing robust membranes. Inspired by the skin-core architecture of spider silk that offers both high strength and high ductility, herein we report an electropolymerization process to prepare a CMP membrane from a rigid carbazole monomer, 2,2',7,7'-tetra(carbazol-9-yl)-9,9'-spirobifluorene, inside a robust carbon nanotube scaffold. The obtained membranes showed superior mechanical strength and ductility, high surface area, and uniform pore size of approximately 1nm. The superfast solvent transport and excellent molecular sieving well surpass the performance of most reported polymer membranes. Our method makes it possible to use rigid CMPs membranes in pressure-driven membrane processes, providing potential applications for this important category of polymer materials. Conjugated microporous polymers (CMPs) have great potential in membrane applications but are often brittle. Here, the authors develop an electropolymerization process to form a skin-core architecture which allows them to overcome mechanical limitations while keeping the excellent separation performance of CMP membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据