4.8 Article

Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-18739-4

关键词

-

资金

  1. BGI
  2. U.S. National Science Foundation [DEB-1064082, IOS-1253493, DEB-1937815, DEB-1355169]
  3. United State Department of Agriculture [TEX0-1-6584]
  4. Texas A&M University Open Access to Knowledge Fund (OAKFund)
  5. University Libraries

向作者/读者索取更多资源

Acoustic communication is enabled by the evolution of specialised hearing and sound producing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound producing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound producing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication. Song et al. inferred that stridulatory wings and tibial ears co-evolved in a sexual context among crickets, katydids, and their allies, while abdominal ears evolved first in a non-sexual context in grasshoppers, and were later co-opted for courtship. They found little evidence that the evolution of these organs increased lineage diversification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据