4.8 Article

Observation of two-dimensional Anderson localisation of ultracold atoms

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-18652-w

关键词

-

资金

  1. German Academic Exchange Service (DAAD)
  2. Marsden Fund [UOA1330]

向作者/读者索取更多资源

Anderson localisation -the inhibition of wave propagation in disordered media- is a surprising interference phenomenon which is particularly intriguing in two-dimensional (2D) systems. While an ideal, non-interacting 2D system of infinite size is always localised, the localisation length-scale may be too large to be unambiguously observed in an experiment. In this sense, 2D is a marginal dimension between one-dimension, where all states are strongly localised, and three-dimensions, where a well-defined phase transition between localisation and delocalisation exists as the energy is increased. Here, we report the results of an experiment measuring the 2D transport of ultracold atoms between two reservoirs, which are connected by a channel containing pointlike disorder. The design overcomes many of the technical challenges that have hampered observation of localisation in previous works. We experimentally observe exponential localisation in a 2D ultracold atom system. Anderson localization has been previously reported in 1D and 3D but it has remained elusive in 2D environments. Here the authors report probable observation of 2D Anderson localization using ultracold atoms in a weak interaction regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据