4.8 Article

Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-18277-z

关键词

-

资金

  1. Projekt DEAL

向作者/读者索取更多资源

Chromosomal inversions are recurrent rearrangements that occur between different plant isolates or cultivars. Such inversions may underlie reproductive isolation in evolution and represent a major obstacle for classical breeding as no crossovers can be observed between inverted sequences on homologous chromosomes. The heterochromatic knob (hk4S) on chromosome 4 is the most well-known inversion of Arabidopsis. If a knob carrying accession such as Col-0 is crossed with a knob-less accession such as Ler-1, crossovers cannot be recovered within the inverted region. Our work shows that by egg-cell specific expression of the Cas9 nuclease from Staphylococcus aureus, a targeted reversal of the 1.1Mb long hk4S-inversion can be achieved. By crossing Col-0 harbouring the rearranged chromosome 4 with Ler-1, meiotic crossovers can be restored into a region with previously no detectable genetic exchange. The strategy of somatic chromosome engineering for breaking genetic linkage has huge potential for application in plant breeding. The heterochromatic knob (hk4S) on Arabidopsis chromosome 4 prevents the recombination between accessions with and without hk4S. Here, via egg-cell specific expression of the Cas9 nuclease, the authors demonstrate targeted reversal of the 1.1Mb long hk4S-inversion in Col-0 and restore the crossovers with Ler-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据