4.8 Article

A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-18232-y

关键词

-

资金

  1. Office of Science of the U.S. Department of Energy [DE-SC0004993]
  2. Swiss National Science Foundation through the Early Postdoc Mobility Fellowship [P2ELP2_178290]
  3. Swiss National Science Foundation (SNF) [P2ELP2_178290] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Capture and conversion of CO2 from oceanwater can lead to net-negative emissions and can provide carbon source for synthetic fuels and chemical feedstocks at the gigaton per year scale. Here, we report a direct coupled, proof-of-concept electrochemical system that uses a bipolar membrane electrodialysis (BPMED) cell and a vapor-fed CO2 reduction (CO2R) cell to capture and convert CO2 from oceanwater. The BPMED cell replaces the commonly used water-splitting reaction with one-electron, reversible redox couples at the electrodes and demonstrates the ability to capture CO2 at an electrochemical energy consumption of 155.4kJmol(-1) or 0.98 kWh kg(-1) of CO2 and a CO2 capture efficiency of 71%. The direct coupled, vapor-fed CO2R cell yields a total Faradaic efficiency of up to 95% for electrochemical CO2 reduction to CO. The proof-of-concept system provides a unique technological pathway for CO2 capture and conversion from oceanwater with only electrochemical processes. Isolating CO2 to use in electrochemical CO2 reduction systems is an ongoing issue. Here, the authors present a proof-of-concept integrated system combining a bipolar membrane electrodialysis cell with a vapor-fed CO2 reduction cell for capture and conversion of CO2 from oceanwater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据