4.8 Article

Multiplex flow magnetic tweezers reveal rare enzymatic events with single molecule precision

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-18456-y

关键词

-

资金

  1. Deutsche Forschungsgemeinshaft (DFG, German Research Foundation) [SFB863-11166240]
  2. European Research Council (ERC) [StG-804098 ReplisomeBypass]
  3. Max Planck Society
  4. Projekt DEAL

向作者/读者索取更多资源

The application of forces and torques on the single molecule level has transformed our understanding of the dynamic properties of biomolecules, but rare intermediates have remained difficult to characterize due to limited throughput. Here, we describe a method that provides a 100-fold improvement in the throughput of force spectroscopy measurements with topological control, which enables routine imaging of 50,000 single molecules and a 100 million reaction cycles in parallel. This improvement enables detection of rare events in the life cycle of the cell. As a demonstration, we characterize the supercoiling dynamics and drug-induced DNA break intermediates of topoisomerases. To rapidly quantify distinct classes of dynamic behaviors and rare events, we developed a software platform with an automated feature classification pipeline. The method and software can be readily adapted for studies of a broad range of complex, multistep enzymatic pathways in which rare intermediates have escaped classification due to limited throughput. Single molecule force measurements have shed light on dynamic biological events, but rare events escape notice owing to low throughput of the methods. Here, the authors combine an array of magnetic tweezers with lateral flow to increase throughput 100-fold, and detect rare DNA breaks induced by gyrase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据