4.8 Article

Isobutanol production freed from biological limits using synthetic biochemistry

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-18124-1

关键词

-

资金

  1. DOE [DE-AR0000556, DE-FC02-02ER63421]
  2. UCLA-DOE Institute Core Facilities

向作者/读者索取更多资源

Cost competitive conversion of biomass-derived sugars into biofuel will require high yields, high volumetric productivities and high titers. Suitable production parameters are hard to achieve in cell-based systems because of the need to maintain life processes. As a result, next-generation biofuel production in engineered microbes has yet to match the stringent cost targets set by petroleum fuels. Removing the constraints imposed by having to maintain cell viability might facilitate improved production metrics. Here, we report a cell-free system in a bioreactor with continuous product removal that produces isobutanol from glucose at a maximum productivity of 4gL(-1) h(-1), a titer of 275gL(-1) and 95% yield over the course of nearly 5 days. These production metrics exceed even the highly developed ethanol fermentation process. Our results suggest that moving beyond cells has the potential to expand what is possible for bio-based chemical production. A cell free or synthetic biochemistry approach offers a way to circumvent the many constraints of living cells. Here, the authors demonstrate, via enzyme and process enhancements, the production of isobutanol with the metrics exceeding highly developed ethanol fermentation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据