4.8 Article

A Cu(II)-ATP complex efficiently catalyses enantioselective Diels-Alder reactions

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-18554-x

关键词

-

资金

  1. National Natural Science Foundation of China [21703132, 21773149, 21273142]
  2. Natural Science Foundation of Shaanxi Province of China [2019JQ161]
  3. Fundamental Research Funds for the Central Universities [GK201802001]

向作者/读者索取更多资源

Natural biomolecules have been used extensively as chiral scaffolds that bind/surround metal complexes to achieve stereoselectivity in catalytic reactions. ATP is ubiquitously found in nature as an energy-storing molecule and can complex diverse metal cations. However, in biotic reactions ATP-metal complexes are thought to function mostly as co-substrates undergoing phosphoanhydride bond cleavage reactions rather than participating in catalytic mechanisms. Here, we report that a specific Cu(II)-ATP complex (Cu2+.ATP) efficiently catalyses Diels-Alder reactions with high reactivity and enantioselectivity. We investigate the substrates and stereoselectivity of the reaction, characterise the catalyst by a range of physicochemical experiments and propose the reaction mechanism based on density functional theory (DFT) calculations. It is found that three key residues (N7, beta-phosphate and gamma-phosphate) in ATP are important for the efficient catalytic activity and stereocontrol via complexation of the Cu(II) ion. In addition to the potential technological uses, these findings could have general implications for the chemical selection of complex mixtures in prebiotic scenarios. ATP acts as a co-substrate in enzyme catalysed reactions, but can also specifically bind metal ions. Here, the authors show that ATP interacts with copper ions and forms a Cu(II)-ATP complex that efficiently catalyses Diels-Alder reactions, and determine ATP residues that are essential for this activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据