4.8 Article

Directed manipulation of membrane proteins by fluorescent magnetic nanoparticles

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-18087-3

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB 958, SFB 756, TRR186]
  2. DFG

向作者/读者索取更多资源

The plasma membrane is the interface through which cells interact with their environment. Membrane proteins are embedded in the lipid bilayer of the plasma membrane and their function in this context is often linked to their specific location and dynamics within the membrane. However, few methods are available to manipulate membrane protein location at the single-molecule level. Here, we use fluorescent magnetic nanoparticles (FMNPs) to track membrane molecules and to control their movement. FMNPs allow single-particle tracking (SPT) at 10nm and 5ms spatiotemporal resolution, and using a magnetic needle, we pull membrane components laterally with femtonewton-range forces. In this way, we drag membrane proteins over the surface of living cells. Doing so, we detect barriers which we could localize to the submembrane actin cytoskeleton by super-resolution microscopy. We present here a versatile approach to probe membrane processes in live cells via the magnetic control of membrane protein motion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据