4.5 Article

NR5A2 Promotes Cell Growth and Resistance to Temozolomide Through Regulating Notch Signal Pathway in Glioma

期刊

ONCOTARGETS AND THERAPY
卷 13, 期 -, 页码 10231-10244

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/OTT.S243833

关键词

glioma; Notch signaling pathway; temozolomide (TMZ); animal model; NR5A2

向作者/读者索取更多资源

Background: Glioma is a fatal primary malignant tumor. We aimed to explore the effect of nuclear receptor subfamily 5 group A member 2 (NR5A2) on glioma. Methods: NR5A2 expression in glioma tissues and cells was detected using qRT-PCR and immunohistochemistry (IHC)/Western blot. SPSS 22.0 was performed to explore the relationship between NR5A2 expression and glioma clinicopathologic features. The downexpressed plasmid of NR5A2 was transfected into glioma cells, and the cell viability, proliferation, apoptosis, migration, and invasion were respectively determined by MTT, EdU, flow cytometry, wound healing and transwell assays. Cell cycle was analyzed using flow cytometry. Temozolomide (TMZ)-resistant glioma cells were established to define the effect of NR5A2 on drug resistance. The expressions of Notch pathway-related proteins were assessed by Western blot. Glioma nude mice model was constructed to explore the role of NR5A2 played in vivo. Results: NR5A2 was highly expressed in glioma tissues and cell lines. NR5A2 overexpression was related to the poor prognosis of glioma patients. NR5A2 knockdown inhibited cell viability, proliferation, migration, and invasion, induced cell cycle arrest and promoted cell apoptosis in U138 and U251 cells. In U138/TMZ and U251/TMZ cell lines, NR5A2 upregulation enhanced TMZ resistance while NR5A2 downregulation reduced it. The knockdown of NR5A2 influenced the expressions of Notch pathway-related proteins. NR5A2 knockdown suppressed tumor growth and facilitated apoptosis in glioma mice model. Conclusion: NR5A2 affected glioma cell malignant behaviors and TMZ resistance via Notch signaling pathway and it might be a novel target in glioma therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据