4.8 Article

Wastewater disinfection: long-term laboratory and full-scale studies on performic acid in comparison with peracetic acid and chlorine

期刊

WATER RESEARCH
卷 184, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116169

关键词

Peracetic acid; Performic acid; E. coli, enterococci inactivation; Decomposition kinetics; Secondary effluent; Oxidative power

向作者/读者索取更多资源

Chemical disinfection of municipal wastewater to preserve the microbiological quality of discharges has traditionally relied on chlorine, and more recently on peracetic acid (PAA). A more recent option is per -formic acid (PFA). This work uses laboratory and full-scale studies over a span of 15 years and five wastewater treatment plants (WWTPs) in Italy, to compare the efficacy of these three disinfectants and identify the differences among peracids in a context where both can be an alternative to chlorine. The investigations focused on treatment effectiveness and bacterial inactivation kinetics using E. coli and the more resistant enterococci, as well as on PFA and PAA decomposition as the residuals may affect the downstream microenvironment. Furthermore, the potential for the two peracids to oxidize organic substances and create troublesome byproducts was also studied. Chlorine, applied as hypochlorite (HYP) and here essentially functioning as chloramines, was used as a baseline comparison for the two peracids. Appropriate statistical tests were applied to the data from different WWTPs to account for potential interferences and compounding effects of the different matrices. Average doses of 0.8, 2.9 and 1.4 mg/L and contact times of 18, 21 and 31 min, respectively for PFA, chlorine and PAA guaranteed with a high level of assurance the 50 0 0 CFU/100mL E. coli limit; the order of effectiveness was PFA > HYP > PAA, refined as PFA > HYP approximate to PAA against E. coli and PFA approximate to HYP > PAA with enterococci. Similar bacterial reductions for the peracids were found at higher disinfectant doses used for the kinetic tests. PFA decayed more quickly than PAA. The first-order decay constants were 0.031 and 0.007 min -1, respectively, suggesting that disinfection residuals when PFA is used may be less of a concern than with PAA. This faster decomposition did not affect the PFA oxidation power on estrone, which was as weak as that of PAA. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据