4.8 Article

Effect of temperature on phosphorus flux from anoxic western Lake From sediments

期刊

WATER RESEARCH
卷 182, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116022

关键词

Limnology; Phosphorus; Internal loading

资金

  1. EPA Great Lakes Restoration Initiative project [GL-00E01284]

向作者/读者索取更多资源

The western basin of Lake Erie experiences annual Harmful Algal Blooms (HABs), which degrade water quality, threaten drinking water supplies, and deter recreation. The size of HABs in Lake Erie is highly correlated with the external loading of phosphorus (P) from a major tributary, the Maumee River, during spring and summer months. Because HAB size is largely explained by external loading, the contribution of P from lake sediments (internal loading) is considered to be minimal. However, if lake sediments become warmer and more hypoxic or anoxic in response to climate change, the relative contribution of internal P loading from sediments may become greater. In this study, we examined the potential effect of elevated lake temperatures on internal loading of P under anoxic conditions. Sediment cores were collected during Summer 2014 from 4 locations in the western basin of Lake Erie ranging from highly productive areas near Maumee Bay to less productive offshore areas. Cores were incubated for 4 days under anoxic conditions under different temperatures (10 degrees C, 20 degrees C, and 30 degrees C). P flux varied greatly between temperature treatments and sites. Average P flux at 20 degrees C and 30 degrees C were 2 and 14 times higher respectively, than for cores incubated at 10 degrees C. The site closest to the mouth of the Maumee River had the highest P flux, 10 times higher than the furthest site, and highest total P concentration in the surface sediment, 2 times higher than the furthest site, suggesting a gradient of sediment P characteristics associated with the Maumee River plume. Extrapolating these fluxes across the western basin suggests that with four days of anoxia at 30 degrees C, lake sediments could contribute similar to 415 metric tons of dissolved P, which is equivalent to the springtime dissolved P, loading from the Maumee River for 2011, the second-largest HAB on record. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据