4.8 Article

Effects of pre, post, and simultaneous loading of natural organic matter on 2-methylisoborneol adsorption on superfine powdered activated carbon: Reversibility and external pore-blocking

期刊

WATER RESEARCH
卷 182, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115992

关键词

PAC; Particle size; Sub-micrometer; Competitive adsorption; Humic substance; Taste and odor

资金

  1. Japan Society for the Promotion of Science [16H06362, 18K19866, 19K21980]
  2. [JPMXS0410300120]
  3. Grants-in-Aid for Scientific Research [19K21980, 18K19866] Funding Source: KAKEN

向作者/读者索取更多资源

Three different natural organic matter (NOM)-loading methods were compared for the adsorptive removal of 2-methylisoborneol (MIB) by superfine powdered activated carbon (SPAC) and conventionally-sized powdered activated carbon (PAC). The three NOM-loading methods were: NOM adsorption followed by MIB (MIB adsorption on NOM-preloaded carbon), MIB adsorption followed by NOM (MIB adsorption on NOM post-loaded carbon), and simultaneous NOM and MIB loading (MIB adsorption on NOM-simultaneously loaded carbon). MIB removals were similar for the smaller-sized carbon (SPAC) at higher AC dosages and at lower initial NOM concentrations. The similar MIB removals indicate direct site competition between MIB and NOM with MIB adsorption reversibility (complete desorption of MIB by NOM). At lower AC doses, especially for PACs, and at higher initial NOM concentrations, the adsorption of MlBs depended on the sequence of MIB or NOM adsorption. MIB removal was lowest for the NOM-preloaded carbon, followed by NOM-simultaneously loaded carbon. The highest MIB removal was achieved by post-loading of NOM, indicating that the adsorption is irreversible. MIB adsorption on SPAC was more reversible than on PAC, although the pore size distributions of the two carbons were similar. The high degree of adsorption irreversibility for PAC compared with SPAC indicated that pore blocking occurs due to NOM loading at the PAC particle surface. Images of the external adsorption were obtained using isotope mapping and 15 N-labeled effluent organic matter. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据