4.8 Article

Organics removal and in-situ granule activated carbon regeneration in FBR-Fenton/GAC process for reverse osmosis concentrate treatment

期刊

WATER RESEARCH
卷 183, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116119

关键词

Reverse osmosis concentrate; Fluidized bed reactor; Fenton; Granular activated carbon; Organics removal; Regeneration

资金

  1. National Research Foundation Singapore
  2. Sembcorp Industries Ltd.
  3. National University of Singapore under the Sembcorp-NUS Corporate Laboratory

向作者/读者索取更多资源

Fluidized bed reactor Fenton (FBR-Fenton) process was adopted for reverse osmosis concentrate (ROC) treatment with three types of carriers, including sand, zeolite and granular activated carbon (GAC). Adsorption studies demonstrated that GAC achieved the best adsorption performance (maximum COD removal of 78% in 15 h) among the three carriers, and the adsorption of ROC organic matters followed a two-stage adsorption model. Fenton oxidations were carried out in three fluidized beds after column saturation, and FBR-Fenton/GAC process achieved highest COD removal (72%) and most BOD5/COD ratio enhancement (from 0.03 to 0.3) in ROC. Long-term operation data demonstrated good performance stability of GAC as the carrier. In addition, GAC fluidized bed obtained highest total iron removal rate via iron crystallization process. Continuous in-situ GAC regeneration with more than 90% recoveries of surface area, pore volume and adsorption capacity were observed along the ROC treatment with FBRFenton/GAC process. Mechanism studies revealed that better COD removal performance in FBR-Fenton/GAC process was attributed to the combining effects of homogenous Fenton reaction, GAC adsorption and GAC/H2O2 catalytic reaction. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据