4.7 Article

Stabilization/solidification and recycling of sediment from Taihu Lake in China: Engineering behavior and environmental impact

期刊

WASTE MANAGEMENT
卷 116, 期 -, 页码 1-8

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2020.07.040

关键词

Recycled stabilized sediment; Fill materials; Unconfined compressive strength; Leachability; Heavy metals; Environmental impact

资金

  1. Fundamental Research Funds for the Central Universities [B200201049]
  2. 333 Project of Jiangsu Province [BRA2019055]
  3. Guangzhou Science and Technology Plan Project [202002020026]

向作者/读者索取更多资源

Investigations of stabilized/solidified sediment (S/S sediment) by simulated field-construction processes (crushing and filling) are fundamental to evaluating the potential reuse as fill materials. A series of tests were conducted on the samples prepared from S/S sediment grains (SG), which was obtained by crushing the cement treated sediment. By sampling the SG with different field-curing durations (t1 : 28, 35, 56 and 98 days) and measuring them by unconfined compressive strength (UCS) tests, the effect of t1 on the UCS was investigated. By continually curing the samples prepared from the SG with 28 field-curing days in laboratory for an additional 7, 28, 35 and 70 days (t2) and subjecting them to UCS and tank leaching tests with different ambient (leachate) pH values (1, 4, 7, 10 and 14), the effect of t2 and ambient pH was evaluated. Increasing t1 and t2 was found to significantly influence the strength of SG, which highlights the importance of an appropriate curing period. The releases of the metals (As, Cr, Cu, Zn, Pb, Ni, and Hg) in the SG exhibited a strongly pH-dependence but less correlation with t2. Neutral conditions (pH = 7) offered the best immobilization capacity for Cu; As, Cr, Ni and Zn exhibited the lowest release at pH = 10; the release of Pb decreased moderately with increasing pH. The S/S sediment complied with the acceptance criteria in terms of metal release and can be regarded as an environmentally friendly fill material. The results highlight the technical feasibility of stabilized sediment recycling in aquatic environment projects. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据