4.8 Article

Distinct Computational Principles Govern Multisensory Integration in Primary Sensory and Association Cortices

期刊

CURRENT BIOLOGY
卷 26, 期 4, 页码 509-514

出版社

CELL PRESS
DOI: 10.1016/j.cub.2015.12.056

关键词

-

资金

  1. European Research Council [ERC-2012-StG_20111109]
  2. Max Planck Society

向作者/读者索取更多资源

Human observers typically integrate sensory signals in a statistically optimal fashion into a coherent percept by weighting them in proportion to their reliabilities [1-4]. An emerging debate in neuroscience is to which extent multisensory integration emerges already in primary sensory areas or is deferred to higher-order association areas [5-9]. This fMRI study used multivariate pattern decoding to characterize the computational principles that define how auditory and visual signals are integrated into spatial representations across the cortical hierarchy. Our results reveal small multisensory influences that were limited to a spatial window of integration in primary sensory areas. By contrast, parietal cortices integrated signals weighted by their sensory reliabilities and task relevance in line with behavioral performance and principles of statistical optimality. Intriguingly, audiovisual integration in parietal cortices was attenuated for large spatial disparities when signals were unlikely to originate from a common source. Our results demonstrate that multisensory interactions in primary and association cortices are governed by distinct computational principles. In primary visual cortices, spatial disparity controlled the influence of non-visual signals on the formation of spatial representations, whereas in parietal cortices, it determined the influence of task-irrelevant signals. Critically, only parietal cortices integrated signals weighted by their bottom-up reliabilities and top-down task relevance into multisensory spatial priority maps to guide spatial orienting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据