4.6 Article

Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy

期刊

VACUUM
卷 183, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.vacuum.2020.109820

关键词

High entropy alloy; Boriding; CoCrFeNiAl0.25Ti0.5; Mechanical properties; Fracture toughness; Powder metallurgy

向作者/读者索取更多资源

CoCrFeNiAl0.25Ti0.5 high entropy alloy alloys were borided to improve their mechanical properties, resulting in significant increases in surface hardness. However, increasing the boriding temperature led to thicker and harder boride layers, but decreased fracture toughness.
CoCrFeNiAl0.25Ti0.5 high entropy alloy alloys (HEA), produced by powder metallurgy were subjected to boriding to improve their mechanical properties. Sintering was carried out at 1200 degrees C for 2 h in Ar, and boriding was performed at 900, 1000 and 1100 degrees C for 2 h using a 90 wt% B4C + 10 wt% NaBF4 boriding powder mixture. Microstructures, densities, surface roughnesses, and mechanical properties (hardness, fracture toughness and nanoindentation responses) of the samples were investigated. FCC, BCC and sigma phases had been observed after sintering, whereas complex metal borides were formed on the surfaces after boriding. Relative density values were between 85% and 90%. Significant increases in surface hardness were observed after boriding due to formation of hard, silicide-free boride layers. The boride layer thickness and hardness increased with increasing boriding temperature. The elastic modulus of the surface of the sintered sample (47.07 GPa) increased with the boriding process to values in the range of 140-151 GPa. Fracture toughness values between 3.57 and 4.25 MPa m(1/2) were obtained in borided samples, and increasing the boriding temperature reduced the fracture toughness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据