4.8 Article

Systems Analysis of the Dynamic Inflammatory Response to Tissue Damage Reveals Spatiotemporal Properties of the Wound Attractant Gradient

期刊

CURRENT BIOLOGY
卷 26, 期 15, 页码 1975-1989

出版社

CELL PRESS
DOI: 10.1016/j.cub.2016.06.012

关键词

-

资金

  1. MRC project [MR/J002577/1]
  2. BBSRC [BB/K018027/1]
  3. National Centre for the Replacement Refinement and Reduction of Animals in Research (NC3Rs) David Sainsbury Fellowship [NC/K001949/1]
  4. Human Frontiers Science Program project [RGP0043/2013]
  5. Wellcome Trust
  6. Biotechnology and Biological Sciences Research Council [BB/K018027/1] Funding Source: researchfish
  7. Medical Research Council [MR/J002577/1] Funding Source: researchfish
  8. National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) [NC/K001949/1] Funding Source: researchfish
  9. Wellcome Trust [097791/Z/11/Z] Funding Source: researchfish
  10. BBSRC [BB/K018027/1] Funding Source: UKRI
  11. MRC [MR/J002577/1] Funding Source: UKRI

向作者/读者索取更多资源

In the acute inflammatory phase following tissue damage, cells of the innate immune system are rapidly recruited to sites of injury by pro-inflammatory mediators released at the wound site. Although advances in live imaging allow us to directly visualize this process in vivo, the precise identity and properties of the primary immune damage attractants remain unclear, as it is currently impossible to directly observe and accurately measure these signals in tissues. Here, we demonstrate that detailed information about the attractant signals can be extracted directly from the in vivo behavior of the responding immune cells. By applying inference-based computational approaches to analyze the in vivo dynamics of the Drosophila inflammatory response, we gain new detailed insight into the spatiotemporal properties of the attractant gradient. In particular, we show that the wound attractant is released by wound margin cells, rather than by the wounded tissue per se, and that it diffuses away from this source at rates far slower than those of previously implicated signals such as H2O2 and ATP, ruling out these fast mediators as the primary chemoattractant. We then predict, and experimentally test, how competing attractant signals might interact in space and time to regulate multi-step cell navigation in the complex environment of a healing wound, revealing a period of receptor desensitization after initial exposure to the damage attractant. Extending our analysis to model much larger wounds, we uncover a dynamic behavioral change in the responding immune cells in vivo that is prognostic of whether a wound will subsequently heal or not.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据