4.8 Article

A Carboniferous Mite on an Insect Reveals the Antiquity of an Inconspicuous Interaction

期刊

CURRENT BIOLOGY
卷 26, 期 10, 页码 1376-1382

出版社

CELL PRESS
DOI: 10.1016/j.cub.2016.03.068

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2012CB821906]
  2. National Natural Science Foundation of China [31230065, 41272006]
  3. Program for Changjiang Scholars and Innovative Research Team in University [IRT13081]

向作者/读者索取更多资源

Symbiosis [1], understood as prolonged interspecific association, is as ancient as the eukaryotic cell [2, 3]. A variety of such associations have been reported in the continental fossil record, albeit sporadically. As for mites, which as a group have been present since the Devonian (ca. 390 mya) [4, 5] and are involved in a tremendous variety of modern-day symbioses, reported associations are limited to a few amber-preserved cases [6-11], with the earliest instance in the Cretaceous (ca. 85 mya) [11]. As a consequence, the antiquity and origin of associations involving small-sized mites and larger animals are poorly understood. Here we report, recovered from the Carboniferous Xiaheyan locality (ca. 320 mya), an oribatid mite located on the thorax of an extinct relative of grasshoppers, crickets, and katydids [12]. The mite was investigated using several methods, including phasecontrast tomography. The detailed morphological data allowed the placement of the mite in a new family within Mixonomata, whose fossil record is thus extended by ca. 250 Ma. Specimen and abundance distribution data derived from the fossil insect sample indicate that specimens from the corresponding excavation site were buried rapidly and were sub-autochthonous, indicating a syn vivo association. Moreover, the mite is located in a sequestered position on the insect. The observed interaction best fits the definition for phoresy, in which the benefit is transport and protection for the mite. This discovery demonstrates that this association, a trait shared by representatives of the most speciose mite taxa, arose very early during mite evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据