4.5 Article

Pathogen-induced defoliation impacts on transpiration, leaf gas exchange, and non-structural carbohydrate allocation in eastern white pine (Pinus strobus)

期刊

TREES-STRUCTURE AND FUNCTION
卷 35, 期 2, 页码 357-373

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00468-020-02037-z

关键词

White pine needle damage; Defoliation; Forest pathogen; Sap flux; Leaf gas exchange; Non-structural carbohydrates

类别

资金

  1. USDA Forest Health Protection NA [15DG-11420004-150]
  2. New Hampshire Agricultural Experiment Station

向作者/读者索取更多资源

Pathogen-induced defoliation reduces transpiration, increases photosynthesis, but has no effect on NSC reserves. Trees affected by WPND prioritize NSC storage over secondary growth, leading to reduced basal area increment in high-severity trees compared to low-severity trees.
Key message Pathogen-induced defoliation resulted in a reduction in transpiration, an upregulation of photosynthesis in the early growing season, and no change in NSC reserves across stem, root, and foliar tissues. The defoliation of eastern white pine (Pinus strobusL.) by native fungi associated with white pine needle damage (WPND) can substantially reduce foliar area for much of the growing season in the northeastern United States. Chronic defoliations in the region are known to have slowed growth rates in symptomatic stands, but the physiological impacts of WPND as it relates to tree water use and carbon assimilation are largely unresolved. We investigated how the severity of WPND defoliation influences transpiration throughout the course of a growing season. We also assessed leaf-level gas exchange between defoliation severity classes and needle age over time. Finally, we compared concentrations of non-structural carbohydrates (NSC) between defoliation severity classes in five different tissue types over time. We found that trees experiencing a high-severity defoliation had 20% lower sap flux density compared to low-severity individuals. We found that rates of photosynthesis were significantly influenced by the needle age class and time of year, while instantaneous water use efficiency was higher across all needle age classes late in the growing season. Our findings suggest that the residual current-year foliage of high-severity defoliated trees compensated for the loss of mature second- and third-year foliage in the early portion of the growing season. This study found that soluble sugars and starch varied significantly over time and by tissue type, but defoliation severity had little effect on NSC concentrations. Together with reduced basal area increment in high-severity trees relative to low-severity trees, this indicates that WPND-affected trees are prioritizing NSC storage over secondary growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据