4.4 Article

A Hybrid-Dimensional Coupled Pore-Network/Free-Flow Model Including Pore-Scale Slip and Its Application to a Micromodel Experiment

期刊

TRANSPORT IN POROUS MEDIA
卷 135, 期 1, 页码 243-270

出版社

SPRINGER
DOI: 10.1007/s11242-020-01477-y

关键词

Coupling; Free flow; Pore-network model; Porous medium; Micromodel

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [SFB 1313, 327154368]
  2. National Natural Science Foundation of China (NSFC) [51906142]

向作者/读者索取更多资源

Modeling coupled systems of free flow adjacent to a porous medium by means of fully resolved Navier-Stokes equations is limited by the immense computational cost and is thus only feasible for relatively small domains. Coupled, hybrid-dimensional models can be much more efficient by simplifying the porous domain, e.g., in terms of a pore-network model. In this work, we present a coupled pore-network/free-flow model taking into account pore-scale slip at the local interfaces between free flow and the pores. We consider two-dimensional and three-dimensional setups and show that our proposed slip condition can significantly increase the coupled model's accuracy: compared to fully resolved equidimensional numerical reference solutions, the normalized errors for velocity are reduced by a factor of more than five, depending on the flow configuration. A pore-scale slip parameter beta(pore) required by the slip condition was determined numerically in a preprocessing step. We found a linear scaling behavior of beta(pore) with the size of the interface pore body for three-dimensional and two-dimensional domains. The slip condition can thus be applied without incurring any run-time cost. In the last section of this work, we used the coupled model to recalculate a microfluidic experiment where we additionally exploited the flat structure of the micromodel which permits the use of a quasi-3D free-flow model. The extended coupled model is accurate and efficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据