4.8 Article

Regulation of Hippocampal Firing by Network Oscillations during Sleep

期刊

CURRENT BIOLOGY
卷 26, 期 7, 页码 893-902

出版社

CELL PRESS
DOI: 10.1016/j.cub.2016.02.024

关键词

-

资金

  1. NIH [MH103775, NS088798, MH109170]
  2. University of Wisconsin-Milwaukee Research Growth Initiative

向作者/读者索取更多资源

It has been hypothesized that waking leads to higher-firing neurons, with increased energy expenditure, and that sleep serves to return activity to baseline levels. Oscillatory activity patterns during different stages of sleep may play specific roles in this process, but consensus has been missing. To evaluate these phenomena in the hippocampus, we recorded from region CA1 neurons in rats across the 24-hr cycle, and we found that their firing increased upon waking and decreased 11% per hour across sleep. Waking and sleeping also affected lower- and higher-firing neurons differently. Interestingly, the incidences of sleep spindles and sharp-wave ripples (SWRs), typically associated with cortical plasticity, were predictive of ensuing firing changes and were more robustly predictive than other oscillatory events. Spindles and SWRs were initiated during non-REM sleep, yet the changes were incorporated in the network over the following REM sleep epoch. These findings indicate an important role for spindles and SWRs and provide novel evidence of a symbiotic relationship between non-REM and REM stages of sleep in the homeostatic regulation of neuronal activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据